
Behaviour Planning for Autonomous Vehicles
Nagarjun Vinukonda
nvinukonda@wpi.edu

Abstract—This paper proposes an approach of safe navigation
while Lane changing in road case scenario. The approach is to
build a cost based decision making module for lane changing task
with multi agents for avoiding collisions. The cost libraries used in
this model helps to make decision of when to change a Lane. The
project is built on modelling exiting Lane Following and Highway
Lane change MATLAB models. The paper describes three
models of the project. Model-1 is working method of simulation
implementation. Model-2 is method of creating decision making
module using safe zones and Model-3 is proposed method of
creating decision making module using cost functions.

Index Terms—Simulink, MATLAB, Lanes, sensors, EGO ve-
hicles, MIOs.

I. INTRODUCTION

The safe navigation for autonomous vehicles depends on
many factors when comes to planning. In general planning
framework can be divided into Motion planning, Mission plan-
ning, behaviour planning. Motion planning generates desired
trajectory of the vehicle considering the dynamic parameters
and output of steering and throttle. Mission planning is to
optimizes the path to achieve different checkpoints considering
the arrival time, distance or different required maneuvers. Be-
haviors planning makes tactical driving decisions about such
things as distance keeping, Lane changing and neighbouring
vehicle interactions [1].

The aim of this project is to build a decision making module
based on cost functions[2]. The project is modified based on
reference Highway Lane change [3].

In order to create a Autonomous Lane change model. First
we need to understand how Lateral[4] and Longitudinal control
[5] is built, which is required to create Traffic Jam assist [6].
The reference Model created by MathWorks for Traffic Jam
assist is also known as Lane Following Control with Sensor
Fusion and Lane Detection [7]. Which is modelled further with
Lane change controller [8] to design a highway Lane change
[9].

The paper uses words like EGO which are vehicles that
are sensor equipped, MIO(Most Important Object) which are
other EGO vehicles around our EGO vehicle. The MIO motion
prediction is based on constant speed model. Both the Models
1&2 require to create a driving a case scenario using MATLAB
driving scenario app [10]. The framework of Model 2 is as
shown in Fig.(1).

My work in Model-1 is related to Vehicle&Environment,
sensor fusion and behaviour planning.

II. LITERATURE SURVEY

Over past years, ADAS systems and autonomous vehicles
have been used to support human driving tasks, especially in

Fig. 1: Frame work of Model-1

order to improve safety and convenience in navigation.
Many researchers have proposed different architectures for

planning and controls. [11] has proposed an offline learn-
ing mechanism to emulate human driver behaviours. This
approach is on prediction based cost functions which is
trained with different traffic scenarios to determine optimal
cost weights that predict human behaviour cost functions.

Learning algorithms such as Artificial Neural Networks
(ANN) have also been implemented in lane keeping and adap-
tive cruise control. The major constraint of learning algorithms
is that they depend too much on training. Therefore, no safety
criteria can be verified. They also restrict the autonomous
vehicle’s ability to exceed a human driver’s performance.

The paper [12] has proposed a real time decision making
module based on human driving behaviour characteristics,
which depends on lawfulness, fear and patience. These pa-
rameters used to evaluate when to change a selected target
lane and mode selection of maneuvering on lane.

Another author [13] has proposed a hierarchical architecture
to enable autonomous vehicles to finish long-term missions
and reduce the workload of motion planning. For each layer
of the architecture, the input higher-level mission is decom-
posed into sub-missions and passed on to the next-lower
level. One of the shortcoming is that the planner problem
becomes very complicated and computationally expensive as
most information is processed in the motion planner, including
road geometry, vehicle dynamics, and surrounding moving
objects and static obstacles. This makes planner to sacrifice
its performance to work on real-time constraints.

Similarly, [14] proposed a novel approach of hierarchical
architecture that considers social cooperation between the
autonomous vehicle and surrounding cars. It introduced a layer
called reference planning which generates kinematically and
dynamically feasible paths assuming no obstacles on the road,
then a behavioral planning layer takes static and dynamic
obstacles into account. The paper has provided experimental
results which has improved both simulation and real au-
tonomous vehicle platform driving quality considerably.

Further, few authors [15] , [16] have introduced a robust



prediction-cost function based algorithm for autonomous free-
way driving. The prediction engine is built so that the au-
tonomous vehicle is able to estimate human drivers’ intentions.
And the cost function library is used to help behavior planners
generate the best strategies of maneuvering on road. My
proposed work is based on the following authors to create the
cost library that helps to make decisions for Lane changing.

III. METHODOLOGY

These are the common methods that can be used for all
three Models.

A. Driving Scenario:

The driving scenario is created with 8 radars and
1 camera sensor. The radar sensors are named as: 1)
FrontLRR 2)FrontMRR 3)LeftFrontSRR 4)LeftRearMRR
5)LeftRearSRR 6)RightFrontSRR 7)RightRearMRR
8)RightRearSRR. The SRR stands for Short-Range, MRR for
Mid-Ranged, LRR for Long-Range. Each has its properties
and the complete sensor addition is as shown in Fig.(2).

Fig. 2: Sensors block

After Addition of sensors we create a the road case scenario
by adding reference waypoints to our model and other actors.
Which results in 3D simulation in birds eye plot as shown in
Fig.(3).

Fig. 3: Sensors block

After creating the scenario we need to export it into
MATLAB function. The driving case scenario cant provide
reference signals. It provides actors profiles which includes
pose, velocity, index. We can generate our reference signals
which will be required for MPC controller further using
”helperCreateReferencePath.m” file provided by MATLAB.

Later, we need to send our reference signals from MATLAB
editor to Simulink. In our I am importing signals as a constant
called ”globalplanpoints” as shown in Fig.(5).

Fig. 4: Vehicle and Environment module

B. Finding MIOs:

In order to find MIOs, we first need to find other lanes
around EGO lane. For which we use MATLAB function
called ”PackLanes.m” which provides curvatures of EGO lane
and its next lane. Next we need to build a function to find
MIOs. This can be either done by calculating Safe Zones or
calculating time of contact(TTC). In this model I have used
Safe Zone Calculations. The safe zone is distance for which
our EGO vehicle wouldn’t be in contact with other actors.
This is calculated with the formula as stated in eq(1). vf is
relative velocity of forward vehicle, ρ is response time of EGO
vechile to perform any activity, ab is brake deceleration of our
EGO car. As stated previously MIOs are considered to move
in constant velocities hence, we take deceleration as 0.4*ag
i.e. ag is 9.8 m/s2.

vf ∗ ρ+ v2f/(2 ∗ ab) (1)

This formula is applied for every MIO which is available
in our lane or next Lane. While calculating safe zones, we
require to state whether calculated distance is safe or not.
For which we introduce a parameter called FCW(Forward
Collision Warning). While detecting MIOs we need to state
FCW=3 if vechile ahead is having more than safe distance
from our EGO vehicle. FCW=2, if relative speed is decreasing
and FCW=1, if a MIO is detected inside our safe zone.

C. Pseudo code:

The Algorithm-1 is pseudocode to calculate MIOs. Instead
of safe zones we can also calculate TTC in similar way through
taking relative distance with speed.

IV. MODEL-1

This is the model of working simulation.

Page 2 of 7



Algorithm 1: General implementation of finding MIOs

Identify the lane curvatures of our lane and next lane.
Initialize EGO parameters like Min and Max position EGO
can reach.
Initialize MIOs.
for Every Target actors found from sensor data: do

Find its lateral and longitudinal positions relative to our
EGO vehicle.
Find lateral positions of left and right EGO lane.
if MIO lateral and longitudinal positions lay within Lane
boundaries then

Store that MIO track index.
end if

end for
if The MIO track index>0 (i.e. MIO is detected) then

Store its position and velocity
Calculate Safe Zone or Time of contact

end if
Store the data in MIO class.

A. Behaviour Planner

:
The behaviour planner consists of estimating EGO vehicle

state, sampling terminal states and defining cost weights for
EGO vehicle.

The terminal state will define sampling behaviour for gener-
ating multiple candidate trajectories. These terminal states will
be used to divide the longitudinal state into more complex
trajectory. The feasibility parameters are required to avoid
excessive curvatures and accelerations. First we need to sample
multiple candidate trajectories for each pair of state (start, ter-
minal states). Evaluate cost for each of these trajectories which
depends upon time, Arc length, deviation, Lateral/Longitudinal
smoothness[17].

Followed by feasibility check for all these trajectories and
then collision check for every trajectory using state validator.
Finally, with these results we can choose feasible collision free
trajectory with minimal cost. Where these two tasks are done
in Motion Planner.

In order to do this first we need to create occupancy map
using state validator. The state validator creates a ”valida-
torOccupancyMap” built by MATLAB. In my scenario, I have
provided binaryOccupancyMap as 100*75 which is different
from default. I also require to provide my Lanewidth which
is 4.5m. The occupancy map is useful to calculate if there is
left and right lane available after lane change and finding no.
of lanes available to change based on the trajectory generated
by reference path as shown in Fig.(5)

We also require to calculate deviation of our EGO vehicle
both lateral and longitudinal from reference path. Next we
need to calculate no.of lateral and longitudinal terminal states
samples as shown in Fig.(6).

In the calculation of Longitudinal Samples I have taken de-
creased my Planning Horizon to 45m as my scenario is having

Fig. 5: EGO vehicle while changing the Lane

Fig. 6: Lateral and Longitudinal samples

more curved roads and the longitudinal planning requires the
road to be straight. I have increased no.of longitudinal sample
to 2 as my scenario has less no.of cars and I don’t require to
maneuver more to get complex trajectories.

Similarly, in lateral sampling I require to change my Lane
width. As no. of Lanes in my scenario are three, I dont require
to change the sampling process. But, if there is a scenario
where no. of Lanes more than 3 or we want to deviate two
lanes at once, we require to calculate lateral states.

The velocity sampler is intended to consider lane speed ve-
locity profile generated for the reference path while generating
trajectory. I have changed the ego set velocity to 20m/s. There
is no use of using acceleration sampler since, we are using
constant velocity model, so I have discarded it and provided
an empty array to avoid index error. Further I have changed the
weights of the costs for time, ARClength, lateralsmoothness to
0.2, 0.2, 0.4 respectively. The following is the Module diagram
of behaviour planner as shown in Fig.(7).

Fig. 7: Behaviour Planner Module

For my working model I have used Motion planner and Lane
change controller provided by MATLAB. And the following
is the result of my scenario as shown in Fig.(8).

Page 3 of 7



Fig. 8: Model-1 result and Module

B. Model-1 Results:

The following are the results of simulation Model-1
Fig.(11). The Fig.(9) shows lateral offset provided by our
reference vs lateral offset after tuned by MPC controller.
Fig.(10) shows the heading angle deviation. Heading angle is
angle between EGO heading direction and Longitudinal axis.
Although in video there are unexpected sharp turns the result
are good. The reason for these sharp turns might be due to
cost weights provided to lateral and longitudinal smoothness,
planning horizon and no.of samples created.

Fig. 9: Later offset, yellow: reference provided and pink: MPC
tuned lateral offset

V. MODEL-2

This model is made from Lane Following with sensor model
from MATLAB, which is been modified to our customs to
create a state flow diagram for decision making module [18].
The following is the Model-2 Fig.(12).

We Follow the same steps for building vehicle Environment,
sensor fusion and finding MIOs. After finding MIOs we create

Fig. 10: Heading, red: reference provided and green and blue:
MPC tuned heading angle and its next iteration respectively.

Fig. 11: Lanechange result

a Lane change planner which requires a Decision making
module as shown in Fig.(13) state flow diagram.

Inside the state flow diagram we have created the deci-
sion making Logic as follows Fig(15). Here the data, data1,
data2, data3, data4, data5 are MIO.Rear, MIO.LeftFront,
MIO.LeftRear, MIO.RightFront, MIO.RightRear respectively.
LCActive is state of Lane change mode whether it is active
or inactive. This is the input from Lane change Planner which
consists trajectory generator. The duration is Time of contact.
Duration(FCW) is a function which determines TTC with MIO
in current EGO Lane. LCParam is either 1 or 2 for left and
right lane respectively.

First we check if there are vehicles around us. If there
are no MIOs available in LeftFront and LeftRear then we
change Left else we change Right. A trigger message is set.
When LCTrigger is false then we start to change the lane.
Finally, the LCstatus and LCParam are provided as output for
the Lane change Planner as shown in Fig.(14). This planner
calculates reference trajectory for changing lane, Lane centers
and velocity of EGO after Lane change. Which are further fed

Page 4 of 7



Fig. 12: Model-2 framework overview

Fig. 13: State Flow diagram framework

into Lane change MPC controller to provide steering angle and
acceleration.

Fig. 14: Overview of Lane Change planner

VI. MODEL-3

The Model-3 is my proposed work for adding the cost
functions to make a decision making module. The cost library

Fig. 15: Decision Making Logic

consists of Gap error, Clear Distance, Relative Velocity. In
this model not only we want to lane change by avoiding the
MIOs around us but also maintain the gap with them. In this
model instead of calculating safety zones we calculate TTC
to determine the relative speeds between EGO vehicles. We
assume our desired distance for EGO to maintain with MIO
is 8m.

1) Gap Error: The gap error cost as shown in Fig.16
is mainly used in keeping a desired distance while
following a lead vehicle. When the gap error is smaller
than zero, which means the current distance to the
lead vehicle is smaller than desired, the cost increases
significantly.

2) Clear Distance: The clear distance cost as shown in
Fig.17 penalizes moving too close to surrounding vehi-
cles. It is set to zero when all other vehicles are above
safe distances.

3) Velocity Differences: Since, we are taking constant
velocity MIOs, if the detected MIO relative velocity is
lower than our EGO, the cost increases as shown in
Fig.18.

Fig. 16: Gap Error

The equations for the cost functions are as follows 2, 3:

Cscen = µ1 ∗CGap+ µ2 ∗ (CC lear) + µ3 ∗ (CRelV el) (2)

Page 5 of 7



Fig. 17: Clear Distance

Fig. 18: Relative Velocities

Ctotal =
∑

Cscen/n (3)

Cscen is total cost of a scenario, µ1,µ2, µ3 cost are weights,
n is no. of scenarios, Ctotal is average total cost evaluated for
all scenarios.

We are require to tune our cost weights and for calculated
Cscen if the cost is greater than threshold Ctotal then we
trigger the Lane change in the decision Module.

The cost weights are taken based on trail and error method.
The following table shows the values taken during experiment
Table.I.

The experiment 1,2 lead to collision of EGO vehicle with
MIO and exp 3 lead to No lane change even though its
necessary. Exp 4 provided Lane change without collision but
maintaining the gap between EGO and MIO very small. Exp5
is able to change lane without collision but its leads to collision
at end of scenario, which is neglected. We considered threshold
for scenario as 65.

Exp.No µ1 µ2 µ3 scenario
1 20 60 40 Collision
2 10 30 20 Collision
3 6 30 70 No Lane change
4 5 40 10 Success
5 30 15 20 Unsuccessful

TABLE I: The cost weights considered

A. Decision Making Module:

The decision making module is similar to Model-2 where
we use Stateflow chart with modifications of adding cost
functions, weights and Motion metrics. The cost functions
imported into simulink using variables for workspace and
weights are provides as constants in simulink model. The
motion metrics used are to check the collision when running
the model. The decision making module in state flow chart is
designed as shown in pseudo code. The sub pseudo codes are
available in Appendix.

Algorithm 2: Cost-Based decision making module

Initialise isMIOs, isLCActive, isFCW,isCollsion as False
Get Lane Boundaries, centers and index of current Lane
Check if MIO is detected in current Lane
if isMIO=True then

CheckFCW i.e. check forward collision
if isFCW=True then

Check if Left Lane change is safe using TTC
if If safeLF & safeLR then

Trigger Lane change()
Check if Right Lane change is safe using TTC

else if safeRF & safeRR then
Trigger Lane change()

else
LCTrigger =True
isLCActive = False
Check Collision()

end if
else

return to check if MIO detected
end if

end if
Send LCParam and LCstatus outputs

VII. FUTURE SCOPE AND CONCLUSION

In this project, I have implemented simulation setup for
lane changing task for my created scenario(Model-1). The
project requires comprehensive understanding of MATLAB
and Simulink. The Model-2 requires to create a Lane change
Planner Module as described previously which consists of
Trajectory Generator, Path Analyser, Virtual Lane centers and
Reference velocity of EGO calculator. In given amount of time
I was able to create the state flow diagram for decision making
logic. In future, to further continue Model-2 we require to
create Lane change planner.

Page 6 of 7



Further, Model-3 can also be implemented once Model-2
is completed to create a decision making module based on
cost functions. For this project we used MATLAB Motion
Planner for experimentation, which require further tuning for
better results. We can further different costs like distance to
goal,etc.

Later, the extension of this project is to export the MATLAB
module into C++ and test it CARLA simulator with different
scenarios.

REFERENCES

[1] J. Kim, K. Jo, D. Kim, K. Chu, and M. Sunwoo, “Behavior and path
planning algorithm of autonomous vehicle a1 in structured environ-
ments,” IFAC Proceedings Volumes, vol. 46, no. 10, pp. 36–41, 2013.

[2] J. Wei and J. M. Dolan, “A robust autonomous freeway driving algo-
rithm,” in 2009 IEEE Intelligent Vehicles Symposium. IEEE, 2009, pp.
1015–1020.

[3] MathWorks, Highway Lane Change,
https://www.mathworks.com/help/driving/ug/highway-lane-change.html.

[4] ——, Lateral controller, https://www.mathworks.com/help/driving/ug/lateral-
control-tutorial.html.

[5] ——, ACC controller, https://www.mathworks.com/help/driving/ug/adaptive-
cruise-control-with-sensor-fusion.html.

[6] M. Seo Woo Park, Traffic-Jam assist,
https://www.mathworks.com/videos/design-and-test-traffic-jam-assist-a-
case-study-1527496724717.html.

[7] MathWorks, Lane Following Control with Sensor Fusion and Lane
Detection, https://www.mathworks.com/help/driving/ug/lane-following-
control-with-sensor-fusion-and-lane-detection.html.

[8] ——, Lane Change Assist Using Nonlinear Model Predictive Con-
trol, https://www.mathworks.com/help/mpc/ug/lane-change-assist-using-
nonlinear-model-predictive-control.html.

[9] M. Seo-Wook Park, Design and Test Decision-Making,
Path-Planning, and Control Modules in Traffic Scenarios,
https://www.mathworks.com/videos/design-and-test-decision-
making-path-planning-and-control-modules-in-traffic-scenarios-
1558962225433.html.

[10] MathWorks, Driving Scenario Designer,
https://www.mathworks.com/videos/driving-scenario-designer-
1529302116471.html.

[11] J. Wei, J. M. Dolan, and B. Litkouhi, “A learning-based autonomous
driver: emulate human driver’s intelligence in low-speed car following,”
in Unattended Ground, Sea, and Air Sensor Technologies and Applica-
tions XII, vol. 7693. International Society for Optics and Photonics,
2010, p. 76930L.

[12] H. Naseri, A. Nahvi, and F. S. N. Karan, “A real-time lane changing and
line changing algorithm for driving simulators based on virtual driver
behavior,” Journal of simulation, vol. 11, no. 4, pp. 357–368, 2017.

[13] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Et-
tinger, D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke et al., “Junior:
The stanford entry in the urban challenge,” Journal of field Robotics,
vol. 25, no. 9, pp. 569–597, 2008.

[14] J. Wei, J. M. Snider, T. Gu, J. M. Dolan, and B. Litkouhi, “A behavioral
planning framework for autonomous driving,” in 2014 IEEE Intelligent
Vehicles Symposium Proceedings. IEEE, 2014, pp. 458–464.

[15] J. Wei and J. M. Dolan, “A robust autonomous freeway driving algo-
rithm,” in 2009 IEEE Intelligent Vehicles Symposium. IEEE, 2009, pp.
1015–1020.

[16] J. Wei, J. M. Dolan, and B. Litkouhi, “A prediction-and cost function-
based algorithm for robust autonomous freeway driving,” in 2010 IEEE
Intelligent Vehicles Symposium. IEEE, 2010, pp. 512–517.

[17] M. Seo-Wook Park, Developing Planning and
Controls for Highway Lane Change Maneuvers,
https://www.mathworks.com/videos/developing-planning-and-controls-
for-highway-lane-change-maneuvers-1592820244862.html.

[18] MathWorks, Introducing the New Stateflow Editor,
https://www.mathworks.com/videos/introducing-the-new-stateflow-
editor-70056.html.

VIII. APPENDIX

Algorithm 3: Trigger Lane change()

Calculate the cost
if Ctotal < Cscen then

LCTrigger =False
isLCActive = True

end if

Algorithm 4: Check Collision()

if isCollsion =True then
CollisionCount++

else
return to check if MIO detected

end if

Page 7 of 7


