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Traffic Signal Detection system 

Abstract: 

In day to day life traffic signal detection has become an important thing in order to avoid accidents. Our 

objective is to implement an object detecting algorithm that detects traffic signals accurately under 

different environmental conditions like illumination, motion, etc. In this paper, we used classical computer 

vision techniques like Hough, SIFT and Top hat filter to detect the traffic lights. We also used YOLO R-CNN 

for accurate detection and made a comparative analysis with other methods implemented. The results of 

this project are stated with different cases that defines both the prospects and challenges of our algorithm 

implementation.   

SECTION-I: 

Introduction: 

Nowadays, traffic signals detection system has an immediate use to avoid accidents. From an online 

survey sourced by AAA foundation for traffic safety, deaths from drivers running red lights in America has 

reached more than 30% in 2017 from 2009 as shown in fig.1. [1] 

 

Fig. 1: no. of killings due to red lights running Increased 31% from a low of 715 in 2009 to 939 in 2017. 

Our motivation is to develop a robust system that can detect traffic signals under different environmental 

conditions like night, more illumination, motion, rain, etc. that helps drivers prevent running over red 

lights. Poor detection of traffic lights due to these environmental conditions are one of the reasons for 

accidents.  

This paper describes approaches implementing SIFT, Hough and Top hat filter methods to detect traffic 

signs.  Further, for better detection neural networks (CNN) is used to classify traffic signs and detect 

accurately. 

1.1 Data set: 

As a part of our project we required a large dataset for testing different algorithms and approaches. We 

obtained the dataset of the Images from WPI’s Embedded Computing Lab’s website [2]. The images that 

we used were taken from a moving vehicle using a dashboard camera. Images in the dataset were 
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different from one another in terms of the distance of the signal from the camera and the orientation of 

each image. We also used a video obtained from Youtube which was shot using a similar setup of 

dashboard camera. The video was used to demonstrate detection of Traffic Signals in real time. 

This report is organized as follows. Section 2 describes different approaches used for detecting traffic 

signs. In Section 3, results and discussion is detailed. Section 4 describes future scope and followed by 

references.    

SECTION-II: 

Approach: 

 I. Scale Invariant Feature Transform (SIFT)   

Scale Invariant Feature Transform (SIFT) is a technique used in computer vision to detect features in an 

image. 

The way SIFT algorithm works is that it first creates a scale space of the image where the test image is 

progressively reduced in size in multiples of 2. Each of the resized image along with the original test image 

are progressively blurred in multiples of a constant (usually 1.2) and each set of blurred images of a given 

size form an octave as shown in fig.2. The Laplacian of Gaussian operation is performed on each octave, 

which is approximated using Difference of Gaussian (DOG) to speed up the computation process. The 

points of minima/ maxima are computed in each DOG images and checked if they lie on DOG images 

above and below the current image in each octave. If a point is found to be a minima/maximum in all 

three DOG images, it is declared as a feature point of the test image. The feature points with low contrast 

are eliminated and the remaining feature points are stored as feature vectors. Each feature vector is a 

vector of 128 numbers with stores overall magnitude and direction information of gradient at that 

keypoint, and thus can be referred as ‘fingerprint’ of a keypoint. [3] 

 
Fig 2: Scale space of image of a cat 
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In order to match keypoints in two images, the algorithm compares each feature vector from the new 

image with feature vectors of the test image and selects the ‘best-match’ based on minimum Euclidean 

distance between the two feature vectors [4]. 

For detection of traffic signal, this SIFT feature detection algorithm is applied on two images of traffic 

signals of same scenario taken from two different perspectives. As seen in fig.3 it was observed that SIFT 

was able to detect a few feature points on the signal for images which differ in perspective. 

 

Fig 3: SIFT on two images of same scene but different perspective. 

When applied on cropped of a traffic signal in the same scene and same perspective, SIFT was able to 

detect and match features with improved accuracy as shown in fig.4.  

 
Fig 4. SIFT on images of traffic signals in same scene and perspective 

The SIFT algorithm is invariant to scale but not to changes in perspective, thus when two images of same 

scene are compared from same perspective, the accuracy of the algorithm improved as compared to 

images from different perspective.  

But when the scene is changed, the performance of SIFT algorithm becomes worse. As seen in fig.5, the 

matching accuracy SIFT algorithm deteriorates as it is matching any two points from the two scenes  
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Fig 5. SIFT on images of traffic signals in two different scenes. 

This accuracy deteriorates even further when two images from different scenes are matched where one 

of the images is too small (cropped image of traffic signal). This is evident in fig 6 where not even one 

feature point is matched between the two images. 

 
Fig6. SIFT on a cropped image with another image of signal from a different scene 

The results of the analysis are similar to the properties of SIFT algorithm according to which SIFT can match 

features robustly in images from same scene and same perspective. But when the perspective is changed 

or even worse, the scene itself is changed, the algorithm fails to match features with accuracy and 

robustness. 

 

II. Top Hat Filter with SURF feature detector: 

Top hat filter is a mathematical morphological operation that extracts tiny elements and details from 

images.  
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It is used for Feature Extraction, Background Equalization, Image Enhancement and various other Image 

Processing operations. The size or width of the elements that are extracted using the top hat filter 

depends upon the choice of the structing element. The bigger Kernel we choose, the larger the element 

we get. 

There are two types of Top Hat Filters:  

- White Top Hat Transform: The White Top Hat transform is obtained by performing the Opening 

Operation on an image in grayscale and subtracting the result of this operation from the input 

image in grayscale 

𝐿𝑒𝑡 𝐴: 𝐸 → 𝑅 𝑏𝑒 𝑎 𝑔𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒 𝑖𝑚𝑎𝑔𝑒,𝑚𝑎𝑝𝑝𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝐸𝑢𝑐𝑙𝑖𝑑𝑎𝑛 𝑠𝑝𝑎𝑐𝑒 𝑡𝑜 𝑎 𝑟𝑒𝑎𝑙 𝑙𝑖𝑛𝑒 

𝐿𝑒𝑡 ℎ(𝑥)𝑏𝑒 𝑡ℎ𝑒 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑖𝑛𝑔 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 

The White Top Hat filter is then given by: 

𝐹𝑤 = 𝐴 − (𝐴 𝜊 𝐵) 

Where (𝐴 𝑜 𝐵) is the opening operation performed by eroding an image using a structural element and 

then proceeding to dilate the result using the same structural element. It is mathematically represented 

by: 

(𝐴 ⊖ 𝐵) ⊕ 𝐵 

Where ⊖ & ⊕ 𝑎𝑟𝑒 𝑒𝑟𝑜𝑠𝑖𝑜𝑛 𝑎𝑛𝑑 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. 

- Black Top Hat Filter: The black top hat filter is given by closing an Image first and then subtracting 

the input image from the results of the closing operation [5]. 

For the purpose of this project, we have used white top hat filter algorithm and the SURF detector. 

SURF or Speeded Up Robust Features is a key point detector that is several times faster than SIFT. It works 

by applying an approximate of Laplacian of Gaussian mask to an image at multiple scales. SURF owes its 

computational speed to the use of integral images where the value of a pixel coordinate (x,y) is the sum 

of all the values in the rectangle defined by the origin and the pixel coordinates (x,y) . Value of the Pixel 

coordinates is calculated by: [6] 

𝐼𝑥(𝑥) =  ∑ ∑ 𝐼(𝑖, 𝑗)

𝑗 ≤ 𝑦

𝑗=0

𝑖 ≤ 𝑥

𝑖=0

 

With the above equation, it only takes 4 sums or addition operations to calculate the pixel values or sum 

of intensities of a region. The Surf Descriptor is Scale and Rotationally invariant. Its feature descriptor 

depends on the sum of Harr wavelet transform around the point of interest. 

SURF makes use of the Hessian Matrix for selecting the location and scale. The Hessian Matrix for a pixel 

is given by 
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𝐻(𝑓(𝑥, 𝑦)) =

[
 
 
 
 
𝜕2𝑓

𝜕2𝑥

𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕2𝑓

𝜕2𝑦 ]
 
 
 
 

 

To adapt to a scale, the images are filtered by a Gaussian kernel. The Hessian Matrix 𝐻(𝑥, 𝜎) at a scale 𝜎 

is defined by  

𝐻(𝑥, 𝜎) =  [
𝐿𝑥𝑥(𝑥, 𝜎) 𝐿𝑥𝑦(𝑥, 𝜎)

𝐿𝑥𝑦(𝑥, 𝜎) 𝐿𝑦𝑦(𝑥, 𝜎)
] 

Where Lxx(x, σ) is the convolution of the Gaussian second order derivative with the image I in point x.  

In order to be rotationally invariant, SURF identifies a reproducible orientation of the interest points. It 

does this by calculating the Haar-Wavelet response in the x and y direction in a circular neighbourhood 

around the key point. It then proceeds to calculate the sum of vertical and horizontal wavelet responses in 

the scanning area. SURF then changes the scanning orientation by 30° and proceeds to recalculates until 

the orientation with the largest sum value is found. The orientation is the main orientation of feature 

descriptor. [6] 

 

Fig 7: Rotational invariance property of SURF 

 

The first step of the implementation of the Top Hat Filter algorithm was to import the RGB Image and 

convert it to grey scale.  
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Fig 8: Test Case 1(a)-RGB 

In the above image, there are three traffic lights present and all three of them are indicating the green 

light or the green signal. Our aim was to detect all three of these signals. Upon converting them to Grey 

scale and applying the White Top Hat Filter algorithm, the following results were obtained.  

 

 

Fig 9: Test Case 1-b (Greyscale) 
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Fig 10: Test Case 1-c(Top Hat Filter) 

 

The application of the Top Hat Filter results in the image shown above. As we can see, the regions with 

high intensity colours are now shown as bright spots on the screen. These bright spots can later be picked 

up by the SURF Feature Detector as key points. 

 

Fig 11: Test Case 1-d (Detection) 

In the above image, the SURF feature detection algorithm detected the key points that were obtained 

after application of the top hat filter algorithm. However, along with the traffic signal, a few outliers were 

also detected. 
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In order to build a more robust detector, a few more test cases were run.  

 

Fig 12: Test Case 2 (RGB) 

The Euclidian distance between the dashboard camera and the traffic signal intended for detection is 

much less than the distance between them in the first test case. This is a slightly more complex image as 

the traffic signal is being overshadowed by an adjacent building, however, there is no shadow on the 

building on the left. The significance of these lighting conditions is reflected in the observation that, when 

the image is converted to grayscale and undergoes binary morphology operations, the building on the left 

and the glowing green signal will be of the same intensity.  

 

 

Fig 13: Test Case 2 



13 
 

In the above image, the traffic signal and the window frame on the left are glowing with same intensity. 

 

Fig 14: Test Case 2 SURF detection 

The similar intensity causes the SURF feature detector to mark the outlier on the left.   

For the third case, the following image was used. 

 

Fig 15: test 3 

The third case is a slight modification of the second test image. In the third case, we attempted to detect 

two signals instead of one. 
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Fig 16: test case 4 

While both the signals were successfully detected, the outlier on the left still persists.  

In order to come up with a more accurate and a robust detector, we moved onto the Hough Circle 

implementation.  

III. Hough Transform and Thresholding on HSV Colour space 

Traffic signs usually have three main colors: Red, Green and Yellow. The area of interest can be narrowed 

down using this color information. We specified a range of threshold in RBG image space for red, green 

and yellow respectively. When applying this range of threshold in the given RBG image various outliers 

also lies in that specific range, since RBG colored range are susceptible to variation in illumination. So, to 

address this problem we used HSV (Hue, Saturation, and Variation) image space for thresholding. Using 

this HSV image our next goal is to define HSV range for red, green and yellow so we can segment our 

image based on three different colors. HSV range for three different colors used are as follows: 

Color Lower Range (HSV) Upper Range (HSV) 

Green ([50,100,100]) ([90,255,255]) 

Yellow ([15,150,150]) ([35,255,255]) 

Red ([160,100,100]) ([180,255,255]) 
Table 1: HSV range for colors 

Next step is to apply this color ranges on an HSV image and create a binary mask for red, yellow and green. 

Binary mask will have 0 assigned to all the pixels which are out of the specified range and 255 (1) 

elsewhere. 
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(a)                                                  (b) 

Fig 17. Binary mask for Red, Green and Yellow: (a) with Red signal as Input Image, (b) with green signal as Input Image 

Another object which is not traffic light can also lie in three HSV color range. So, to avoid this noisy outlier 

we used image morphological operations like opening followed by dilation. An opening is defined as an 

erosion followed by a dilation using the same structuring element for both operations. 

Fig . 

Fig 18: Morphological operation on the image to remove outlier in binary mask 

As now we know the area of our interest, we can find the exact pixel location where the signal was found 

using the dilated binary mask. Then compute Hough transform in that region to get exact outer boundary 

and centre of traffic signal. Now using this data, we drew Hough circles around traffic signal. To recognize 

it as a red, green or yellow we used dilated binary mask of all the three color and calculated total number 

of white pixels in each mask. Mask with maximum number of white pixels is declared as the color of the 

traffic light.  

 

 

 

Fig 19: Image Processing and Recognition (Hough Transform and Thresholding on HSV colour space) 

Input RBG Image 
convert into HSV 

space

Create a binary mask 
for each colour using 

HSV range

Apply binary mask 
on HSV image 

Apply Morphological 
opertation on mask 

to remove Noise

Look for area of 
interest find its exact 

location

Apply Hough 
Transform in area of 

interest 

Declare status of 
signal based on mask  
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This algorithm is invariant to illuminous and performs well in most of the case and was able to detect the 

traffic signal successfully. Following Image shows three different signal light and its detection using this 

algorithm.    

 

Fig 20: Final output of Hough Transform and Thresholding on HSV image algorithm  

However, there are few cases where the noise in the binary mask is large and equivalent to traffic light. 

This algorithm performance poor in that cases. In the following image traffic signal in the extreme right 

has a green sign board which lies in the same HSV range as green light. This outlier is much stronger than 

the signal light below it. So, it is not completely errored by opening operation on mask. Hence the 

algorithm declares that traffic sign as traffic signal rather than actual signal below it. 

 

 

Fig 21: Case where Hough Transform and Thresholding on HSV image algorithm fails 
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IV. YOLOv3 (You Only Look Once) 

We used deep learning network architecture like YOLOv3 for real time object detection. It is a feature-

learning based network that adopts 75 convolutional layers as its most powerful tool. In total there are 

106 convolution layers for feature extraction. No fully connected layer is used. This structure makes it 

possible to deal with images with any sizes. No pooling layers are used, which saves us computing time 

and keep image features intact. Instead, a convolutional layer with stride two is used to down sample the 

feature map, passing size-invariant feature forwardly.[7] 

 

Fig 22. YOLOv3 Network Architecture. 

We tried to train this model using TensorFlow on the traffic light dataset that we used [8]. Data pre-

processing involved in training this model was also one of the big challenges that we faced. So, we used a 

pre-trained YOLOv3 model available publicly on Darknet website [9]. Model weights and config file for the 

model was pre-trained. Pre-trained model can detect up to 80 different objects (e.g. Traffic signal, car, 

chair, etc.). We modified the model to just detect traffic signal from 80 different classes. Network creates 

a bounding box around the features that could probably be a traffic signal in each input image. This 

bounding box has its own probability which specifies that the object belongs to that class. The width of 

the bounding box defines how strong is the probability of that feature detected by the network 

corresponding to a pre-defined class. For example, in the fig. (a) network tries to find the features in the 

image which belong to traffic light. In fig (b) as the network see all the features of dog and cycle through 

all 106 CNN layers it calculates the probability and the thickness of bounding box grows. 
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(a)                                          (b) 

Fig 23. Bounding boxes: (a) intermediate stage (b) After computing probability for each feature 

 Now the network knows which can be possible positions where the traffic signal in the input image can 

be. We set a threshold where we specify that bounding box with probability or confidence less than 75% 

is discarded. Thus, the network returns the center, width and height of the bounding box which has 

probability greater than 75%. [10] Using this window parameter (x, y, w, h) we create a rectangular 

window around each of the detecting traffic signals  

Decision rule: 

R= # of white pixels in red mask 

G= # of white pixels in green mask 

Y= # of white pixels in yellow mask 

 

Condition  Signal Status 

R > G & R > Y STOP 

Y > G & Y > R GO SLOW 

G > Y & G > R GO 

                                       Table 2: signal conditions 
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Using that information, we create new variables for each of the detected bounding boxes and apply the 

algorithm discussed in Approach III. (Hough Transform and Thresholding on HSV image space) for 

detecting and displaying the status of lights of the detected signals as shown in the figure below. 

 

Fig 24: Applying YOLO and detecting the status of the signal 

In order to display the status of the signal, we use the decision rule described in table 2. By applying the 

algorithm discussed in Approach III, we obtain binary mask images for each color of the signal (red, 

yellow and green). For each of the detected signals in each binary mask images (for R, Y & G) we 

compute the total number of white pixels which serve as an important variable in our decision rule. 

This is evident in fig. 25 in which each of the detected traffic signal is used to apply the red, yellow and 

green masks and then declares the status of color of the image based upon the decision rule described 

in table 2. 

 

Fig 25: Applying Approach III on each of the detected traffic signals 

 

The Yolov3 algorithm was even tested to run on real time by applying it on the video which is a travel 

vlog on the routes of Downton Boston [11]. The results of this performance can be observed in the video 

links added in Appendix 6 of the report. 
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Fig 26. A still from the video of Appendix 6 where Yolov3 was applied on real-time video 

The robustness of this algorithm is evident in Fig 27 where Yolov3 was able to detect and declare the 

object as a traffic signal and even its status under different lighting and illumination conditions. It was 

not only able to detect but also classified the status of the signal. 

 

Fig 27: Applying Yolo in night conditions 
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SECTION III 

3.1 Results: 

1. SIFT: As a result of the analysis, it was found (Fig 3 and 4) that SIFT feature detection algorithm 

was able to detect features in two images when the two images are from scene and almost similar 

perspectives. 

 
But when there is a change in scenario or perspective (figure 5 and 6), the performance of the 

algorithm deteriorates, and it loses it accuracy. 

 

2. Top Hat Filter with SURF:  
Upon applying the Top Filter along with the SURF Algorithm, while the traffic signals were being 
detected, there were multiple outliers. The methodology would detect the brightest spot on the 
image and would mark it as traffic signal. However, if another object of similar or greater 
intensity was present in the image, it would also be marked as a traffic signal which gave rise to 
inaccuracy in the technique. Moreover, with each image having different parameters such as 
distance of the signal from the camera, a single code can’t detect and mark signals in all images 
as the kernel required for each image would be different and so the methodology is not robust 
and a different technique was needed for higher accuracy and robustness. 
 

3. Hough Transform and thresholding on colour space:  

From the analysis, it was found that implementation of this algorithm was able to detect a traffic 

light and classify it into red, green or yellow properly. 

 
But this algorithm has certain inherent limitations like it can easily get confused if it detects a 

circular object in the image which has the same HSV color range as that of red, yellow or green 

traffic light. 

 

4. YOLOv3:  

The YOLOv3 algorithm was able to detect the traffic signals with accuracy in robustness. In 

addition to this, it was able to detect signals even under different lighting conditions (day and 

night) and even in real time.  

 
The inherent drawback of this algorithm is the computation time. Due to its computational 

complexity, the computation drops to as low as 1.4 fps.  

3.2 Conclusion:  

As analyzed in the ‘Results’, each of the four methods implemented have their own advantages and 

disadvantages associated with them. Out of the four, YOLOv3 performed the best in terms of accuracy 

and robustness. It was even able to detect traffic signals under different lighting conditions and in real 

time. Once detected a traffic signal, it was even able to detect the color of the light of traffic light. Thus, 

in terms of performance, it can be sufficiently concluded that the YOLOv3 algorithm would be the best to 

be implemented, if need be, on an autonomous vehicle. Also, the current issues faced in implementing 
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this algorithm can be further reduced by implementing it on sophisticated GPUs with current embedded 

computing boards such as NVIDIA Jetson. 

SECTION IV: 

Future Scope: 

1. SIFT and SURF with SVM 

2. (FUTURE SCOPE in TOP HAT FILTER) 

3. (FUTURE SCOPE in Hough transform) 

4. For this project, a pre-trained model was used for implementing Yolov3. A neural network can be 

trained to detect traffic signals on a new dataset. 

5. The algorithm for Yolov3 can be further extended to detect green signals for left and right 

directions (Go-Left or Go-Right). 
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Appendix 

[1] SIFT Code-Python: 

import numpy as np 

import matplotlib.pyplot as plt 

import cv2 as cv 

 

 

from mpl_toolkits import mplot3d 

'''Once this submodule is imported, a three-dimensional axes can be created by passing the 

keyword projection='3d' to any of the normal axes creation routines''' 

 

def _3Dplot(img1,r,col): 

 

ax = plt.axes(projection='3d') 

x = np.linspace(0, col, col)        #define the axis X 

y = np.linspace(0, r, r)            #define the axis Y 

X, Y = np.meshgrid(x, y) 

 

ax = plt.axes(projection='3d') 

ax.plot_surface(X, Y, img1, rstride=1, cstride=1,cmap='viridis', edgecolor='none') 

ax.set_title('surface'); 

############# used of rotation of the plot ##################### 

for angle in range(0, 360): 

ax.view_init(90, angle) 

#        plt.draw() 

#        plt.pause(.001) 

 

##################################################################################

###################### 

def threshold(img,r,col): 

for i in range(r): 

for j in range(col): 

if img[i][j] > 70: 

img[i][j] = 255 

img_g = cv.GaussianBlur(img,(5,5),4) 

return img_g 

##################################################################################

######################## 

 

def row_col(img): 

r = img.shape[0]                   # stores height of the image 

col = img.shape[1]                 # stores widhth of the image 

return r,col 

 

##################################################################################

###################### 



 

def Shift(img,minHessian): 

 

surf = cv.xfeatures2d.SURF_create(minHessian) 

surf.setExtended(True) 

 

keypoints, des = surf.detectAndCompute(img,None) 

print("number of key points:",np.size(keypoints)) 

 

img_keypoints = np.empty((img.shape[0], img.shape[1], 3), dtype=np.uint8) 

img_key = cv.drawKeypoints(img, keypoints, img_keypoints) 

 

#img_key = cv.drawKeypoints(img,keypoints,None,(255,0,0),4) 

return keypoints,des,img_key 

 

 

##################################################################################

####################### 

def match(img1,img2,des1,des2,kp1,kp2): 

# BFMatcher with default params 

bf = cv.BFMatcher() 

matches = bf.knnMatch(des1,des2, k=2) 

 

# Apply ratio test 

good = [] 

for m,n in matches: 

if m.distance < 0.75*n.distance: 

good.append([m]) 

 

# cv2.drawMatchesKnn expects list of lists as matches. 

img3 = cv.drawMatchesKnn(img1,kp1,img2,kp2,good,outImg = None,flags=2) 

return img3 

 

##################################################################################

######## 

def main(): 

img1 = cv.imread(r'C:\Users\vrush\Jupyter Noteboks\CV\12.jpg') 

img2 = cv.imread(r'C:\Users\vrush\Jupyter Noteboks\CV\t1.jpg') 

 

r1,col1 = row_col(img1) 

r2,col2 = row_col(img2) 

 

#_3Dplot(img1,r,col) 

 

#img1 = threshold(img1,r1,col1) 

#img2 = threshold(img2,r2,col2) 

 

kp1,des1,img_s1 = Shift(img1,minHessian = 200) 



kp2,des2,img_s2 = Shift(img2,minHessian = 200) 

 

 

 

imgf1 = match(img1,img2,des1,des2,kp1,kp2) 

imgm = cv.resize(imgf1,(1080,720)) 

 

 

cv.imshow('match', imgm) 

cv.waitKey(0) 

cv.destroyWindow('match') 

##################################################################################

######### 

if __name__=="__main__": 

main() 

 

[2] Top Hat Filter-MATLAB: 

clear all; 
close all; 
clc; 
 
%Reading the image and converting to Gray Scale 
 
IMG1=imread('IMG5.jpg'); 
figure(); %fig 1 
imshow(IMG1) 
IMG2=IMG1; 
IMG1=rgb2gray(IMG1); 
figure(); %fig 2 
imshow(IMG1) 
 
%Creating a Window of size 5x5 to apply Top Hat Filter 
se = strel('disk',5); 
f1 = imadjust(imtophat(IMG1,se)); 
figure(); %fig 3 
imshow(f1) 
 
%Running a for loop to binarize the Image 
for i=1:1080 
for j=1:1920 
if f1(i,j)<90 
f1(i,j)=1; 
end 
end 
end 
 
%Applying Gaussin to reduce noise 
f1 = imgaussfilt(f1,16); 



figure(); 
 
imshow(f1) 
%Applying SURF to detect features 
points = detectSURFFeatures(f1); 
 
%Displaying Image 
imshow(IMG2); hold on; 
 
%Plotting 5 Strongest points 
plot(points.selectStrongest(5)); 

[3] Hough Transform and Thresholding on HSV-Python: 

import numpy as np 

import cv2 

import os 

 

 

def HSV_Values(b,g,r): 

    c = np.uint8([[[b,g,r]]]) 

    print(c) 

    hsvg = cv2.cvtColor(c,cv2.COLOR_BGR2HSV) 

    print (hsvg) 

    lower = hsvg[0][0][0] - 10,100,100 

    upper = hsvg[0][0][0] + 10,255,255 

    print(lower) 

    print(upper) 

##################################################################################

############## 

def Track(frame): 

    #Convert BGR to HSV     

    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) 

     

    # define range of blue color in HSV 

    lower_green = np.array([50, 100, 100]) 

    upper_green = np.array([90, 255, 255]) 

     

    lower_red1 = np.array([0,100,100]) 

    upper_red1 = np.array([10,255,255]) 

    lower_red2 = np.array([160,100,100]) 

    upper_red2 = np.array([180,255,255]) 

     

    lower_yellow = np.array([15,150,150]) 

    upper_yellow = np.array([35,255,255]) 

     

    # Threshold the HSV image to get only blue colors 

    mask1 = cv2.inRange(hsv, lower_red1, upper_red1) 

    mask2 = cv2.inRange(hsv, lower_red2, upper_red2) 



    maskg = cv2.inRange(hsv, lower_green, upper_green) 

    masky = cv2.inRange(hsv, lower_yellow, upper_yellow) 

    maskr = cv2.add(mask1, mask2) 

     

    '''Here it will take the HSV img value and if the value lies in the range 

     it will store that particular index value as 1 (255) else 0(0). Thus we get our mask''' 

     

    # Bitwise-AND mask and original image 

    #res = cv2.bitwise_and(frame,frame, mask= maskg) 

    #cv2.imshow('res',res) 

    '''Here it will take the mask and see which index has 1(255) and it will allow 

   that BGR value to display in the image rest (0 0 0)''' 

    return maskg,masky,maskr 

##################################################################################

############## 

def Open(mask): 

    kernal = np.ones((5,5),np.uint8) 

    close = cv2.morphologyEx(mask,cv2.MORPH_CLOSE,kernal) 

    return close 

 

##################################################################################

##############     

def detect(maskg,masky,maskr): 

     

    r_circles = cv2.HoughCircles(maskr, cv2.HOUGH_GRADIENT, 1, 80, 

                               param1=50, param2=10, minRadius=0, maxRadius=30) 

 

    g_circles = cv2.HoughCircles(maskg, cv2.HOUGH_GRADIENT, 1, 60, 

                                 param1=50, param2=10, minRadius=0, maxRadius=30) 

 

    y_circles = cv2.HoughCircles(masky, cv2.HOUGH_GRADIENT, 1, 30, 

                                 param1=50, param2=5, minRadius=0, maxRadius=30) 

     

    font = cv2.FONT_HERSHEY_SIMPLEX 

    size = cimg.shape 

    r = 5 

    bound = 4.0 / 10 

     

     

    if r_circles is not None: 

        r_circles = np.uint16(np.around(r_circles)) 

 

        for i in r_circles[0, :]: 

            if i[0] > size[1] or i[1] > size[0]or i[1] > size[0]*bound: 

                continue 

 

            h, s = 0.0, 0.0 

            for m in range(-r, r): 



                for n in range(-r, r): 

 

                    if (i[1]+m) >= size[0] or (i[0]+n) >= size[1]: 

                        continue 

                    h += maskr[i[1]+m, i[0]+n] 

                    s += 1 

            if h / s > 50: 

                cv2.circle(cimg, (i[0], i[1]), i[2]+10, (0, 255, 0), 2) 

                cv2.circle(maskr, (i[0], i[1]), i[2]+20, (255, 255, 255), 2) 

                cv2.putText(cimg,'RED',(i[0], i[1]), font, 1,(255,0,0),2,cv2.LINE_AA) 

 

    if g_circles is not None: 

        g_circles = np.uint16(np.around(g_circles)) 

 

        for i in g_circles[0, :]: 

            if i[0] > size[1] or i[1] > size[0] or i[1] > size[0]*bound: 

                continue 

 

            h, s = 0.0, 0.0 

            for m in range(-r, r): 

                for n in range(-r, r): 

 

                    if (i[1]+m) >= size[0] or (i[0]+n) >= size[1]: 

                        continue 

                    h += maskg[i[1]+m, i[0]+n] 

                    s += 1 

            if h / s > 100: 

                cv2.circle(cimg, (i[0], i[1]), i[2]+20, (0, 255, 0), 2) 

                cv2.circle(maskg, (i[0], i[1]), i[2]+10, (255, 255, 255), 2) 

                cv2.putText(cimg,'GREEN',(i[0], i[1]), font, 1,(255,0,0),2,cv2.LINE_AA) 

 

    if y_circles is not None: 

        y_circles = np.uint16(np.around(y_circles)) 

 

        for i in y_circles[0, :]: 

            if i[0] > size[1] or i[1] > size[0] or i[1] > size[0]*bound: 

                continue 

 

            h, s = 0.0, 0.0 

            for m in range(-r, r): 

                for n in range(-r, r): 

 

                    if (i[1]+m) >= size[0] or (i[0]+n) >= size[1]: 

                        continue 

                    h += masky[i[1]+m, i[0]+n] 

                    s += 1 

            if h / s > 50: 

                cv2.circle(cimg, (i[0], i[1]), i[2]+20, (0, 255, 0), 2) 



                cv2.circle(masky, (i[0], i[1]), i[2]+10, (255, 255, 255), 2) 

                cv2.putText(cimg,'YELLOW',(i[0], i[1]), font, 0.7,(255,0,0),2,cv2.LINE_AA) 

 

    return cimg 

##################################################################################

############## 

def main(): 

         

    cimg1 = cv2.imread(r'H:\Masters Study\Computer Vision\Project\g11.jpg') 

    cimg = cv2.resize(cimg1,(1080,720)) 

     

     

    #check HSV ramge Values for a particular colour  

    HSV_Values(0,255,0) 

     

     

    #get the masked images 

    maskg,masky,maskr = Track(cimg)  

     

     

     

    kernel = np.ones((2,2),np.uint8) 

    opening_g = cv2.morphologyEx(maskg,cv2.MORPH_OPEN,kernel, iterations = 4) 

    opening_y = cv2.morphologyEx(masky,cv2.MORPH_OPEN,kernel, iterations = 1) 

    opening_r = cv2.morphologyEx(maskr,cv2.MORPH_OPEN,kernel, iterations = 1) 

     

    # sure background area 

    sure_bg_g = cv2.dilate(opening_g,kernel,iterations=3) 

    sure_bg_y = cv2.dilate(opening_y,kernel,iterations=3) 

    sure_bg_r = cv2.dilate(opening_r,kernel,iterations=3) 

     

    cimg = detect(sure_bg_g,sure_bg_y,sure_bg_r)    

     

    cv2.imshow('maskg', opening_g) 

    cv2.imshow('maskr', sure_bg_g) 

    cv2.imshow('masky', maskg) 

     

    cv2.imshow('detected results', cimg) 

    #cv2.imwrite(os.path.join('H:\Masters Study\Computer Vision\Project', 'green.jpg'),cimg) 

     

        

    cv2.waitKey(0) 

    cv2.destroyAllWindows() 

 

##################################################################################

############## 

if __name__=="__main__": 

    main() 



 

[4] YOLO Object Detection-Python: 

# YOLOv3 on images 

 

import cv2 

import numpy as np 

 

# Function of code: Thresholding in HSV Color space to detect the status of the signal as 'Red', 'Green' 

or 'Yellow'  

 

def Status(X1): 

    Hsv= cv2.cvtColor(X1, cv2.COLOR_BGR2HSV) 

    hsv.append(Hsv) 

    #  variable to store total # of white pixels in binary mask images of each color 

    countr=0 

    countg=0 

    county=0 

    # creating masks for each color of the signal 

    MASK1= cv2.inRange(Hsv,L_red1,u_red1) 

    mask1.append(MASK1) 

    MASK2= cv2.inRange(Hsv,L_red2,u_red2) 

    mask2.append(MASK2) 

    MASKG= cv2.inRange(Hsv, l_green,u_green) 

    maskg.append(MASKG) 

    MASKy= cv2.inRange(Hsv, l_yellow, u_yellow) 

    masky.append(MASKy) 

    MASKr= cv2.add(MASK1, MASK2) 

    maskr.append(MASKr) 

    dime1=np.shape(MASKr) 

    dime.append(dime1) 

    (H1,W1)= dime1 

     

    # computing the total number of white pixels in binary mask images of each color 

    for j in range(H1): 

        for k in range(W1): 

           if MASKr[j][k]==255: 

               countr+=1 

           if MASKG[j][k]==255: 

               countg+=1 

           if MASKy[j][k]==255: 

               county+=1 

     

    L= [0, countr, county, countg] 

    final_color= L.index(max(L)) 

    # declaring the status of the signal on the condition of max(R, G, Y) 

    if final_color==1: 



        status="STOP" 

    elif final_color==2: 

        status="SLOW DOWN" 

    elif final_color==3: 

        status="GO" 

    else: 

        status="" 

    return status 

 

 

 

# Load Yolo 

net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg") 

classes =[] 

txt= "image" 

wind_name=[] 

 

 

 

# load classes 

with open("coco.names", "r") as f: 

    classes = [line.strip() for line in f.readlines()] 

 

# apply the NN layers 

layer_names = net.getLayerNames() 

output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] 

 

 

# create a new random color for each new box to be constructed 

colors = np.random.uniform(0, 255, size=(len(classes), 3))  

color=(255,0,0) 

 

# Loading image 

img = cv2.imread("C:\\Users\\Kavit\\OneDrive\\Desktop\\CV Project]\\YOLO\\YOLO img\\Wpi Signal 

4.jpeg") 

img = cv2.resize(img, None, fx=0.5, fy=0.5) 

height, width, channels = img.shape 

 

# Detecting objects 

 

# Arguments of cv2.dnn.blobFromImage= (imgae, scale_factor, (size), (mean subtraction), invert blue 

with red {True/False}, crop yes or no) 

blob = cv2.dnn.blobFromImage(img, 0.00392, (416, 416), (0, 0, 0), True, crop=False)  

 

 

net.setInput(blob) # giving blob as input to the net 

outs = net.forward(output_layers) 

 



# Showing informations on the screen 

class_ids = [] 

confidences = [] 

boxes = [] 

 

# computing the window parameters of each object of given classes detected 

for out in outs: 

    for detection in out: 

 

        scores = detection[5:] 

         

        class_id = np.argmax(scores) 

         

        confidence = scores[class_id] 

        if confidence > 0.5 and class_id ==9: 

             

            center_x = int(detection[0] * width) 

            center_y = int(detection[1] * height) 

            w = int(detection[2] * width) 

            h = int(detection[3] * height) 

            #cv2.circle(img, (center_x, center_y), 10, (0, 255, 0), 2) 

             

            # Rectangle coordinates 

            x = int(center_x - w / 2) 

            y = int(center_y - h / 2) 

             

            boxes.append([x, y, w, h]) 

            confidences.append(float(confidence)) 

             

            # appending the class_ids for each iteration of every detected class elements 

            class_ids.append(class_id) 

 

# applying non-maximal suppression 

indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4) 

# non-maximal supression removes double identifications for same objects 

 

# the limits for the HSV color spaces for three colors  

L_red1= np.array([0,100,100]) 

u_red1=np.array([10,255,255]) 

L_red2=np.array([160,100,100]) 

u_red2=np.array([180,255,255]) 

l_green=np.array([50,100,100]) 

u_green=np.array([90,255,255]) 

l_yellow=np.array([15,150,150]) 

u_yellow=np.array([35,255,255]) 

mask1=[] 

mask2=[] 

maskr=[] 



masky=[] 

maskg=[] 

dime=[] 

l_red2=np.array 

X=[] 

Y=[] 

X1=[] 

blur=[] 

hsv=[] 

font = cv2.FONT_HERSHEY_COMPLEX 

img_new= img.copy() 

#print(indexes) 

font = cv2.FONT_HERSHEY_PLAIN 

 

# this loop adds the name of the detected class and also the status of color of the signal 

for i in range(len(boxes)): 

    if i < len(indexes): 

    #if str(classes[class_ids[i]]) =='traffic signal' 

        #print(i) 

        x, y, w, h = boxes[i] 

        label = str(classes[class_ids[i]]) 

        print (label) 

        X.append(x) 

        Y.append(y) 

         

        X1.append(img_new[Y[i]: Y[i]+h, X[i]:X[i] + w]) 

         

         

        #color = colors[1] 

         

        name= "signal" + str(i+1) 

        wind_name.append(name) 

         

        cv2.rectangle(img, (x, y), (x + w, y + h), color, 1) 

 

        status= Status(X1[i]) 

        print(i) 

        print(status) 

        cv2.putText(img, status, (x, y -50 + 30), font, 1.6, color, 2) 

 

# display the final computed image 

cv2.imshow("Image", img) 

 

 

 

cv2.waitKey(0) 

cv2.destroyAllWindows() 

 



 

 

[5] YOLO Real Time Detection-Python: 

 
import cv2 

import numpy as np 

import time 

 

# Load Yolo 

net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg") 

classes = [] 

with open("coco.names", "r") as f: 

    classes = [line.strip() for line in f.readlines()] 

layer_names = net.getLayerNames() 

output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] 

colors = np.random.uniform(0, 255, size=(len(classes), 3)) 

 

# Loading image 

cap = cv2.VideoCapture('C:\\Users\\Kavit\\OneDrive\\Desktop\\Detectors\\Test1_Trim.mp4') 

 

font = cv2.FONT_HERSHEY_PLAIN 

starting_time = time.time() 

frame_id = 0 

L_red1= np.array([0,100,100]) 

u_red1=np.array([10,255,255]) 

L_red2=np.array([160,100,100]) 

u_red2=np.array([180,255,255]) 

l_green=np.array([50,100,100]) 

u_green=np.array([90,255,255]) 

l_yellow=np.array([15,150,150]) 

u_yellow=np.array([35,255,255]) 

while True: 

    _, frame = cap.read() 

    frame_id += 1 

 

    height, width, channels = frame.shape 

 

    # Detecting objects 

    blob = cv2.dnn.blobFromImage(frame, 0.00392, (416,416), (0, 0, 0), True, crop=False) 

 

    net.setInput(blob) 

    outs = net.forward(output_layers) 

 

    # Showing informations on the screen 

    class_ids = [] 

    confidences = [] 

    boxes = [] 



    X1=[] 

    X=[] 

    Y=[] 

    hsv=[] 

    mask1=[] 

    mask2=[] 

    maskr=[] 

    masky=[] 

    maskg=[] 

    dime=[] 

    for out in outs: 

        for detection in out: 

            scores = detection[5:] 

            class_id = np.argmax(scores) 

            confidence = scores[class_id] 

            if confidence > 0.25 and class_id==9: 

                # Object detected 

                center_x = int(detection[0] * width) 

                center_y = int(detection[1] * height) 

                w = int(detection[2] * width) 

                h = int(detection[3] * height) 

 

                # Rectangle coordinates 

                x = int(center_x - w / 2) 

                y = int(center_y - h / 2) 

 

                boxes.append([x, y, w, h]) 

                confidences.append(float(confidence)) 

                class_ids.append(class_id) 

                 

     

    indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.8, 0.6) 

    frame_new= frame.copy() 

    print(len(boxes)) 

    for i in range(len(boxes)): 

        #print(boxes[i]) 

        if i in indexes: 

            print ('i= ', i) 

        #if str(classes[class_ids[i]]) == 'traffic signal': 

            x, y, w, h = boxes[i] 

            #label = str(classes[class_ids[i]]) 

            label= 'Traffic Signal' 

            countr=0 

            countg=0 

            county=0 

            confidence = confidences[i] 

            #print(label) 

            X.append(x) 



            Y.append(y) 

            color = colors[class_ids[i]] 

            cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2) 

            cv2.putText(frame, label + " " + str(round(confidence, 2)), (x, y + 50+25), font, 2, color, 2) 

             

            X1.append(frame_new[Y[i]:Y[i] + h, X[i]:X[i] + w]) 

             

            Hsv= cv2.cvtColor(X1[i], cv2.COLOR_BGR2HSV) 

            hsv.append(Hsv) 

            MASK1= cv2.inRange(Hsv,L_red1,u_red1) 

            mask1.append(MASK1) 

            MASK2= cv2.inRange(Hsv,L_red2,u_red1) 

            mask2.append(MASK2) 

            MASKG= cv2.inRange(Hsv, l_green,u_green) 

            maskg.append(MASKG) 

            MASKy= cv2.inRange(Hsv, l_yellow, u_yellow) 

            masky.append(MASKy) 

            MASKr= cv2.add(MASK1, MASK2) 

            maskr.append(MASKr) 

            dime1=np.shape(maskr[i]) 

            dime.append(dime1) 

            (H1,W1)= dime1 

            for j in range(H1): 

                for k in range(W1): 

                   if MASKr[j][k]==255: 

                       countr+=1 

                   if MASKG[j][k]==255: 

                       countg+=1 

                   if MASKy[j][k]==255: 

                       county+=1 

             

            L= [0, countr, county, countg] 

            final_color= L.index(max(L)) 

             

            if final_color==1: 

                status="STOP" 

            elif final_color==2: 

                status="SLOW DOWN" 

            elif final_color==3: 

                status="GO" 

            else: 

                status="" 

            cv2.putText(frame, status + " " , (x, y -27 +25), font, 2, color, 3) 

            #for j in range (H1): 

                #print (j) 

    elapsed_time = time.time() - starting_time 

    fps = frame_id / elapsed_time 

    cv2.putText(frame, "FPS: " + str(round(fps, 2)), (10, 50), font, 2, (0, 0, 0), 1) 



     

    cv2.imshow("Image", frame) 

    #cv2.imshow("red", maskr[1]) 

    #cv2.imshow("yellow", masky[1]) 

    #cv2.imshow("green", maskg[1]) 

    #cv2.imshow("n img", y1) 

    key = cv2.waitKey(1) 

    if key == 27: 

        break 

 

cap.release() 

cv2.destroyAllWindows() 

 

[6] "YouTube", Youtube.com, 2019. [Online]. Available: 

https://www.youtube.com/watch?v=6thHwfyPkGg. [Accessed: 12- Dec- 2019]. 

 

[7] "YouTube", Youtube.com, 2019. [Online]. Available:  

https://www.youtube.com/watch?v=PsYKZ-kU1rA  [Accessed: 12- Dec- 2019]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


