
3D Object Detection using KIITI Dataset
Abhishek Jain, Nagarjun Vinukonda, Rishabh Chadha, Vrushabh Desai

Abstract—3D Object detection is an active research problem
for Perception of Autonomous Vehicles. The goal of our project is
to understand the Frustum PointNet architecture and experiment
with possible design modifications and evaluate their influence on
performance metrics. There are various components in the 3D
Object Detection Pipeline and we have experimented with a few
modifications in the architecture and loss functions which are
discussed in the report.

I. INTRODUCTION

Object detection in 2D is well known and there has been
a lot of progress in that domain . However, the ideas from
2D object detection are not directly transferable to 3D object
Detection on Point Clouds. This is because of the change in
the structure of the data. A reliable method for 3D Object
Detection is important for autonomous vehicles to obtain a
better understanding of the environment around it and make
corresponding decisions. Compared to 2D object detection
where the model is trained to draw bounding boxes around
the object of interest in the image plane, 3D object detection
requires estimation of the object size and related details in the
3D world. For 3D object detection, we need to draw a 3D
bounding box in 3D space (rectangular cuboid).

Fig. 1: Sample image from the KITTI Dataset

II. DATASET

The dataset [2] has been captured from a VW station wagon
for use in mobile robotics and autonomous driving research.
In total, the data of 6 hours of traffic scenarios has been
recorded at 10-100 Hz using a variety of sensor modalities
such as high-resolution color and grayscale stereo cameras,
a Velodyne 3D laser scanner and a high-precision GPS/IMU
inertial navigation system. The scenarios are diverse, capturing
real-world traffic situations and range from freeways over
rural areas to inner-city scenes with many static and dynamic
objects. The data contains 7481 training point-cloud data and
images and 7518 testing point cloud data and images. The data
falls into 2 types of classifications: 1) Based on the difficulty

which depends on the amount of occlusion. 2) Based on the
object type - Car, Pedestrian and Cyclist.

III. RELATED WORK

There have been different approaches to tackle the problem
of applying Deep Learning on Point Clouds. Few of them
involve representing point clouds as a collection of 2D images
over which 2D convolution is applied. Other approaches have
attempted to discretize the point cloud into a volumetric 3D
grid and then apply 3D convolutions over that volume to
classify if it contains an object of interest. PointNet[3] was a
pioneering architecture which directly worked on point clouds.

Frustum PointNets[1] take advantage of existing 2D detec-
tion algorithms to help in localizing an object of interest in 3D
point clouds. The technique takes a LiDAR point cloud and a
2D bounding box containing an object as input, and outputs
an estimated 3D bounding box for the object. This is done
by an efficient amalgam of both 2D object detection and 3D
object detection along with a reduced computational burden
leading to efficiency in terms of both speed and memory.

Fig. 2: 3D Frustum Region Proposal from 2D projection

This is achieved in the following manner: 2D object de-
tection techniques are used to generate region proposals in
2D space using RGB images. 3D Frustums are then extruded
in the point cloud space using these 2D space proposals thus
generating 3D Frustum point cloud proposals as shown in Fig.
2. Then, 3D object detections techniques (Point-Net based) are
used in a 2-way fashion to generate 3D bounding boxes in 3D
space. The 3D object detection is performed in 2 steps:

1) Classification
2) Regression
Classification is used to segment image into the three

identified classes: Cars, Pedestrians and Cyclists. In a multi-
class detection case, the technique also leverages the semantics
from a 2D detector for better instance segmentation. For
example, if we know the object of interest is a pedestrian, then
the segmentation network can use this prior to find geometries



that look like a person. Correspondingly, the detected object is
classified into the classes as per merit and a 3D bounding box
is generated which leads to the second part of the detection :-
Regression.

Fig. 3: Frustum Point-Net Architecture overview

Regression is used to get the best estimate of the place-
ment of the 3D bounding box around the detected object.
The technique uses a light-weight regression PointNet (T-
Net) to estimate the true center of the complete object and
then transform the coordinate such that the predicted center
becomes the origin of the bound box. Hence, the problem
is firmly governed by two major techniques: Classification
and Regression. Correspondingly, the training loss involves
both classification and regression losses as major contributors.
There is potential to change the 2D detection method in
the architecture, recent 2D detectors have been specifically
designed for application on embedded systems.

IV. PROPOSED METHOD

SqueezeDet [4] is an architecture that was designed par-
ticularly for carrying out 2D object detection which can be
deployed on embedded systems in Autonomous vehicles. Our
motivation to use SqueezeDet was due to its significant low
memory model size and high speed.

Fig. 4: Comparison of the size Model size and speed of
SqueezeDet and Fast RCN

Also, most architectures which deal with 3D point clouds
use Smooth L1 loss for regression, we investigated the use of
L2 loss over this as well.

V. EXPERIMENTS

For the Frustum PointNet architecture, 2D region proposals
are extruded in the form of a frustum in the point cloud
which helps to localize the objects of interest. We replaced
the original Fast-RCNN 2D proposals by proposals from
SqueezeDet. This would lead to different 3D frustum point
cloud regions of interest and hence would change the overall
results of the model as well

A. Results

We analyzed the performance of the network using 2 kinds
of losses:

1) Smooth L1 loss
2) MSE Loss

Fig. 5: Object detection using Smooth L1 Loss

Fig. 6: Object detection using MSE Loss

The above figures show the 3D object detections with the
two kinds of losses discussed in our approach. The pink color
denotes the actual ground truth bounding box with blue color
denoting the actual heading directions whereas the yellow
and red color denote the predicted bounding box and heading
direction respectively.

We used Adam Optimiser with a learning rate of 10-3 with
a batch size of 32 to get the following graphs.

The MSE loss function initially gave a huge loss value
before converging down to an optimum value both in the
training and validation losses.

VI. DISCUSSION

During training, if the MSE loss is used the initial values
are very high as evidenced by the graph the model takes
longer to train. However, as the training continues the loss
starts to decrease consistently. For the metrics in 2D object
detection, the values were close to the values for the original
Frustum PointNet architecture. However, the values for AP in
3D object detection were significantly lesser than the results
of the original Frustum PointNet model.

One probable reason for this difference in the 3D proposals
generated by the 2D detector which was changed. The authors



Fig. 7: Training Loss for Smooth L1

Fig. 8: Validation Loss for Smooth L1

Fig. 9: Training Loss for MSE

in the original paper performed significant fine tuning and used
an initial model trained on ImageNet and fine tuned it on the
COCO dataset. The accuracy of 3D detections depends heavily
on the initial regions proposed by the 2D detector. One major
roadblock for making progress was the training time it took
for the model in case any changes were made. It was in the

Fig. 10: Validation Loss for MSE

Fig. 11: 2D Detection Results (mAP)

Fig. 12: 3D Detection Results (mAP)

order of 2 days. The SqueezeDet 2D detection model can be
further fine tuned on other data sets before it is used on the
KITTI Dataset (ex. COCO dataset).

VII. CONCLUSION AND FUTURE DIRECTIONS

For this project we attempted to understand the overall
pipeline for 3D object detection in Autonomous Vehicles and
carry out some modifications to understand their influence on
the overall performance. The performance of the model could
be improved by fine tuning of the SqueezeDet detector as
discussed above. Current State Of The Art methods for 2D
object detection and alternatives to the PointNet architecture
can also be incorporated into this pipeline to experiment with
and potentially improve the performance of the model. The
solutions to real world problems in 3D detection can get very
complicated and understanding each sub-component of the
model and their influence on the overall performance can take
a significant amount of time to comprehend.

REFERENCES

[1] C. R. Qi, W. Liu, C. Wu, H. Su and L. J. Guibas, ”Frustum PointNets
for 3D Object Detection from RGB-D Data,” 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, 2018,
pp. 918-927, doi: 10.1109/CVPR.2018.00102.



[2] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-tonomous
driving? the kitti vision benchmark suite.InCVPR, 2012.

[3] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deephierar-
chical feature learning on point sets in a metric space.arXiv preprint
arXiv:1706.02413, 2017.

[4] B. Wu, A. Wan, F. Iandola, P. H. Jin and K. Keutzer, ”SqueezeDet:
Unified, Small, Low Power Fully Convolutional Neural Networks for Real-
Time Object Detection for Autonomous Driving,” 2017 IEEE Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW), Hon-
olulu, HI, 2017, pp. 446-454, doi: 10.1109/CVPRW.2017.60.

[5] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meet-
srobotics: The kitti dataset. The International Journal ofRobotics Research,
32(11):1231–1237, 2013. 5


