
TurtleBot Path Tracking using PID Controller
Nagarjun Vinukonda, Rishi Madduri, Rishabh Chadha, Vrushabh Desai

Abstract—An optimal control techniques well known in control
community is proposed i.e. PID controller to address the problem
of path tracking in autonomous vehicles. In this project we
propose PID controller for turtle bot Navigation in order to
determine steering control at each instant of time. This project
aims to demonstrate the the control performance when robot
attempts to follow a path.

Index Terms—PID Controller, simulation, gazebo, ROS.

I. INTRODUCTION

There are multiple control methods available to control
robot which depends on application specific and path planning
done.

The robot controls field is exceptionally advance and grows
with more exiting new research. Many researchers have in-
vented interesting projects, for an instance, Khnissi et al,
implemented global asymptotic stability for robot tracking
tasks using Neural Network controllers while navigating mo-
bile robot [1]. Parra-Vega et al, have proposed a simple
decentralized continuous sliding PID controller [2].

All these experiments and ventures require a software
platform to develop and test for which a simulation tool called
Gazebo is used from ROS platform. ROS is widely used
framework in field of robotics for writing robust robot software
using a collection of tools and libraries that facilitate the end
goal of robot control.

Turtlebot is a differential drive mobile robot that exists as
a personal robot kit with open-source software. The project
is intended to allow users to have an inexpensive means of
exploring ROS, implementing control systems for learning and
for fun. In the absence of real hardware, the software that is
generated for the Turtlebot in ROS can be used in the Gazebo,
later after testing in software, hardware implementations can
be done.

Path Tracking is a considerable problem in autonomous
industries taking over past few years for which many control
methods for path tracking have been developed considering
the nonholonomic constraints of autonomous vehicles. PID
has advantages that include robustness and simplicity for
which best choice of PID parameters are searched for different
process models. In this project we are using closed loop ROS
Turtlebot as our Kinetic Model as shown in Fig.(1). It is
assumed that our kinetic Model (Turtle bot) moves without
slipping on a plane, that means there is a pure rolling contact
between the wheels and the ground and also there is no lateral
slip between the wheel and the plane. Its Kinematic analysis
can be conducted by using Cartesian coordinates.

(a) Front view (b) Top view

Fig. 1: Turtlebot

II. LITERATURE SURVEY

The field of wheeled mobile robots has seen a dramatic rise
in applications across multiple domains, in the last decade.
Tasks and areas that can endanger human life can now be
accomplished by these wheeled robots. However, a robust
control system is required to deploy these robots and ensure
a safe human robot interaction. Chang et al. in [3] present a
simple way of implementing an adaptive tracking controller
based on PID for mobile robot trajectory tracking. They apply
a classical PID approach for a path-following controller. They
have used a non-linear model of mobile robot kinematics to
perform an accurate trajectory prediction. They construct their
control law based on Lyapunov stability and consists of a
parallel structure PID controller with fixed gain. They also
perform a computer simulation for a differentially driven non-
holonomic mobile robot.

In [3] Mayyahi et al. propose an optimal control technique
that addresses the problem of path tracking. They utilize a
Fractional Order Proportional Integral Derivative controller
to control an autonomous ground vehicle. They track the
behavior of a predefined reference path. In their work, they
design two such controllers. And utilize the input torque to



manipulate the vehicle to obtain path. In comparison with [4],
[3] uses both Kineamtic and Dynamic model instead of just
Kineamtic Model. To further optimze the FOPID parameters,
the authors of [4] use a particle swarm optimization algorithm.
Normey-Rico et al. [5] propose a robust PID controller for
path tracking. They use a linearized model for the mobile
robot which consists of an integrator and a delay system.
They have tested their PID controller on synchro-dirve mobile
robot and have shown good performance. The paper by Luo
et al. [6] proposes a rule-based expert control PID algorithm.
It combines position error and error rate of change output to
correct PID parameters. They perform simulation in MATLAB
and prove an improved dynamic performance, adaptability and
a better tracking function.

III. DYNAMIC MODEL AND CONTROL

Most indoor mobile robots do not move like a car. Our
Turtlebot is differential drive bot. There are two main wheels
of equal radius, each of which is attached to its own motor.
To construct a simple model of the constraints that arise from
the differential drive, let us assume a distance L between the
two wheels, and the wheel radius, r as shown in Fig.(2).

Fig. 2: The parameters of a generic differential-drive robot

While the robot is moving based on the observations, the
transition equations are:

ẋ = r/2 ∗ (ul + ur) ∗ cos(θ) (1)

ẏ = r/2 ∗ (ul + ur) ∗ sin(θ) (2)

θ̇ = r/L ∗ (ur − ul) (3)

In the above equations ur and ul are right and left wheel
velocities, x and y are position coordinates of robot and θ̇ is
angular velocity.

In the Fig.3 provided, it represents various subsystems that
comprise the trajectory planning of an autonomous driving
system and its controller. The desired position and velocity is
fed into the different controller (i.e. PID) as its input. Using
these inputs and feedback from the system, the controller
produces an output signal that represents the force that must be
applied to the system (in the form of motor torque). The goal
of this project is to demonstrate the effect that a controller
has when a robot attempts to follow a path, which will be
explained in detail below.

Fig. 3: Turtlebot Control Structure

IV. PID CONTROLLER

The desired output for the mobile robot is its position while
applying position control which is a PID controller. An error
is calculated on the position when control is applied, and this
is used to compute a voltage that is sent to the motors, which
ultimately drives the motors toward a desired position. The
control law for a PID controller is listed below in equation
(4).

τ = Kpq̃ +Kv
˙̃q +Ki

t∫
v

q̃(σ)dσ (4)

τ represents the torque, q̃ is the position error, ˙̃q is the
velocity error, and q̃(σ)dσ is the integral term obtained by
integrating, with respect to time and the position error term.
Kp, Kv, and Ki represent the proportional, derivative and
integral gains, respectively.

Fig. 4: Turtlebot PID control diagram

Page 2 of 5



As shown in Fig.4, the PID Control block receives the
desired position and desired velocity of the wheel. The goal
of the PID block is to give the mobile robot the motor torque
required to achieve the desired position and velocity.

Note that the role of the integral component in a PID
controller is to make the steady state error in the PD control
system go to zero and the role of the derivative component is to
dampen the response, acting similar to friction. As mentioned,
the desired terms are received and are subtracted from the ac-
tual positions and velocities to create the position and velocity
errors. The calculated torques are fed into the TurtleBot block,
which produces the actual position and velocity for the system.

V. METHODOLOGY

A. Coding Libraries

We are using ROS(Robot Operating System) for TurtleBot3
Navigation, Rviz for visualisation and Gazebo simulation tool.
We are using C++ as our programming platform.

B. Pseudo code:

Algorithm 1: General PID Controller implemenation

Generate a random start node
Set Goal node
Set orientation range w.r.t start node
Set initial Kp,KI,Kd values
while not reached goal: do

Calculate distance Goal position
Calculate change in angle
Multiply error to Kp,Kd,Ki and keep updating

end while
When Goal has reached:
Calculate error in orientation and set the angle

C. Working method:

We implemented a closed Loop PID controller for which
both position and orientation tracking is done while navigating
the turtlebot3.

1) Proportional Error Kp:
It is the Euclidean distance between goal position and
start position.

d =
√
(goalx − startx)2 + (goaly − starty)2 (5)

2) Integral Error KI:
It is calculated by updating distance at each interval.
Where Dt is Total distance travelled.

Dt = Dt + d (6)

3) Derivative Error Kd:
It is the difference between the current node and previ-
ous node. Where Dp is previous dtance to node.

DD = d−Dp (7)

Similarly, error is calculated for orientation of turtlebot
while navigating.

4) Turn Angle:
It is the angle turned by the turtlebot to travel from
point 1 to point 2

φ = arctan
y2 − y1
x2 − x1

(8)

VI. EXPERIMENTS

The below figure shows our results while navigating our
turtle bot in Rviz. We used trail and end method for tuning
and we can tune further our PID parameters in order to reduce
the error. In the figure we are navigating our turtlebot through
pentagon trajectory and the path followed by bot is visualized
in red color. Following the success of our simulation, we
deployed our PID Controller on a Turtlebot.

Fig. 5: Turtlebot Navigation on pentagon path

VII. RESULTS AND ANALYSIS

We have navigated our turtlebot in a closed environment.
The following are the results of our experiment. We have
conducted our experiment into two parts: Single Goal and
Multi-Goal experiment.

We have tuned our Kp, Kd, Ki values using trail and
end method. While Navigating our turtlebot in single goal
experiment, we set our initial Kp, Kd, Ki values as 0.1, 0.001,
0.001 respectively and it resulted as Fig.6, where the error is
decreasing with time, as well as linear velocity when reached
goal. We have tuned our parameters to Kp, Kd, Ki values as
0.3, 0.001, 0.0001 respectively and resulted Fig.7. Similarly
we have increased Kp, increased Kd and decreased Ki as
0.5, 0.01, 0.0001 respectively and resulted Fig.8. As observed

Page 3 of 5



Linear.x is the linear velocity of turtlebot.

Fig. 6: PID error vs time

Linear.x is the linear velocity of turtlebot.

Fig. 7: PID error vs time

from graphs as the error decreases the time taken to reach the
goal decreases, therefore increase in velocity.

In the second experiment, we kept multiple points as our
goal as shown in the video recorded. The graph Fig.9 shows
position error vs time. As there are multiple goals available,
the error decreases with time when reached the goal and the
sudden spike in graph is due to started of new goal point,
which is different from previous goal point.

The Fig.10 and Fig.11 shows the change in theta error w.r.t
time. As the robot follows straight path from start node to first
goal near start node, there is no change in error in angle (i.e.
the curve is flat), but as soon as the robot sets its goal to a new
point, the change in angular error decreases in both directions

Linear.x is the linear velocity of turtlebot.

Fig. 8: PID error vs time

Fig. 9: Position error vs time

w.r.t time with our tuning parameters.

VIII. FUTURE SCOPE AND CONCLUSION

The PID controller was the most effective in terms of
maintaining a small steady-state error and providing a very fast
response time. The addition of the integral controller helped
to reduce the steady-state error, as it sums small amounts of
error over time and accommodates for them with corrections
when they’ve become significant enough to require correction.

Page 4 of 5



Fig. 10: Angular error vs time

Fig. 11: Angular error vs time

In this project we have successfully implemented PID
control on turtle bot both on Hardware and Software. From this
experiment we have gained knowledge on ROS and its tools
and experience on hardware implementation. Project work was
distributed evenly among team members to ensure that each
individual was actively participating in group work. Through
tuning in experiment we found, increase in Kp, increase in Kd

and decrease in Ki will reduce error effectively as discussed
in class.

In Future we can work on to tune the gains and perform
more testing to ascertain the effect of the tuning on the steady-
state error, overshoot, and response time of the controller.

REFERENCES

[1] K. Khnissi, C. Seddik, and H. Seddik, “Smart navigation of mobile robot
using neural network controller,” in 2018 International Conference on
Smart Communications in Network Technologies (SaCoNeT). IEEE,
2018, pp. 205–210.

[2] V. Parra-Vega, S. Arimoto, Y.-H. Liu, G. Hirzinger, and P. Akella, “Dy-
namic sliding pid control for tracking of robot manipulators: Theory and
experiments,” IEEE Transactions on Robotics and Automation, vol. 19,
no. 6, pp. 967–976, 2003.

[3] H. Chang and T. Jin, “Adaptive tracking controller based on the pid for
mobile robot path tracking,” in Intelligent Robotics and Applications,
J. Lee, M. C. Lee, H. Liu, and J.-H. Ryu, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 540–549.

[4] A. Al-Mayyahi, W. Wang, and P. Birch, “Path tracking of autonomous
ground vehicle based on fractional order pid controller optimized by
pso,” in 2015 IEEE 13th International Symposium on Applied Machine
Intelligence and Informatics (SAMI), 2015, pp. 109–114.

[5] J. E. Normey-Rico, I. Alcalá, J. Gómez-Ortega, and E. F.
Camacho, “Mobile robot path tracking using a robust pid
controller,” Control Engineering Practice, vol. 9, no. 11,
pp. 1209 – 1214, 2001, pID Control. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0967066101000661

[6] Z. Luo and W. Li, “Tracking of mobile robot expert pid controller
design and simulation,” in 2014 International Symposium on Computer,
Consumer and Control, 2014, pp. 566–568.

Page 5 of 5


